KE
  • dotNet Web 3.0
  • Engineering Management
    • Process Planning (SDLC)
      • Software development process
      • Basics of SDLC models
      • Scrum
      • Kanban
      • Scrum vs Kanban: applicability
      • Scrumban
    • Estimation
      • Scope Concept
      • Estimates, Targets, and Commitments
      • Overestimate vs Underestimate
      • Decomposition and Recomposition
      • Analogy-based estimations
      • Estimating in Agile
  • Requirements
    • Software Requirements Engineering
      • Requirement definition
      • Levels of Requirements
      • Most common requirements risks
      • Characteristics of Excellent Requirements
      • Benefits from a High-Quality Requirements Process
      • Root Causes of Project Success and Failure
  • Design
    • OOD
      • Abstraction
      • Encapsulation
      • Inheritance vs Aggregation
      • Modularity
      • Polymorphism
      • Abstraction Qualities (cohesion, coupling, etc)
      • Types vs. Classes
      • Separation of concerns principle
      • SOLID
      • Design Patterns
        • Structural patterns
        • Creational patterns
        • Behavioral patterns
      • Most often used design patterns
      • Software Architecture Patterns (structure, pros & cons)
      • Inversion of Control Containers and the Dependency Injection pattern
      • Domain-Driven Design patterns
      • Anti-patterns
    • DB Design
      • Relational Terminology: Entities
      • Relational terminology: Attributes
      • Relational terminology: Records (Tuples)
      • Relationships (One-to-One, One-to-Many)
      • Understanding ER notation
      • Understanding normalization concept
      • Data Integrity
    • Modeling
      • UML: Basic Diagram Types
      • UML: Use Case Diagram (Essentials)
      • UML: Class Diagram (Essentials)
      • Entity Relationship Diagrams
      • Data Flow Diagrams
    • Security
      • Information security concepts
      • Access Control Lists (ACLs)
      • Access Control Models
      • .NET Cryptography Model
      • ASP.NET Identity
      • OWASP Top 10
      • Cross-Site Request Forgery (XSRF)
      • Protecting against cross-site scripting attacks (XSS)
      • Protecting against buffer overrun attacks
      • Protecting against SQL-injection attacks
      • CSRF/XSRF protection
    • Algorithms
      • Algorithms complexity (understanding, big O notation, complexity of common algorithms)
      • Array sorting methods (bubble sort, quick sort, merge sort)
      • Tree structure (construction, traversal)
      • Binary search algorithm
      • Hash table (creating, collisions)
      • Stack, queue, linked list (construction, understanding, usage)
  • Construction Core
    • Programming language
      • Declare namespaces, classes, interfaces, static and instance class members
      • Types casting
      • Value and reference types. Class vs Struct usage.
      • Properties and automatic properties
      • Structured Exception Handling, Exception filters
      • Collections and Generics
      • Dictionaries. Comparison of Dictionaries
      • Building enumerable types
      • Building cloneable objects
      • Building comparable types
      • Nullable types
      • Delegates, events and lambdas
      • Indexers and operator overloading
      • Anonymous types
      • Extension methods. Practices.
      • Custom Type Conversions (implicit/explicit keywords)
      • Strings and StringBuilder. String concatenation practices. String Interpolation
      • Serialization
      • System.IO namespace
      • LINQ to Objects
      • General Coding conventions for C#
      • Static Using Statement
      • Type Reflection
      • Custom attributes
      • Dispose and Finalizable patterns
      • Garbage collection
      • .Net Diagnostics
      • Implementing logging
      • Exception handling guidelines
      • Regular Expressions
      • Span<T> struct
      • C# - What's new?
      • .NET Standard overview
    • Concurrency
      • Understand differences between Concurrency vs Multi-threading vs Asynchronous
      • Concurrency: An Overview
      • Async basics
      • Task Parallelism
      • Basic Synchronization in C#
      • Deadlock problem
      • QueueBackgroundWorkItem or IHostedService for .NET Core
      • How to run Background Tasks in ASP.NET
    • Refactoring
      • Refactoring Concept (what/when/why)
      • Smells Catalog and possible re-factorings
      • Moving Features Between Objects (basic)
      • Organizing Data (basic)
      • Composing Methods (basic)
      • Simplifying Conditional Expressions (basic)
      • Making Method Calls Simpler
      • Dealing with Generalization
    • Product deploying, software installation
      • Create, configure, and publish a web package (.NET Web Profile)
      • Publishing Web Services
      • Manage packages by using NuGet, NPM and Bower
    • Networking
      • Understanding networks: layers and protocols
      • Basic understanding of TCP/IP model and protocols
      • Defining internet, intranet and VPN
      • Basics of Firewalls and DMZ
      • Application layer protocols basics (HTTP, FTP, Telnet)
      • Understanding HTTP and WWW
      • Basic troubleshooting tools (ICMP, ping, traceroute)
      • Client/Server model
      • Sockets, IP and port addressing
      • Using proxy server
      • File transfer services: FTP, TFTP
      • Name resolution services: DNS, whois
      • Remote access services: Telnet, SSH, rdesktop, VNC
      • The basic difference between HTTP and HTTPS protocols
  • Construction Web
    • Web server applications
      • ASP.NET Core
        • Application startup
        • Middleware
        • Working with Static Files
        • Routing
        • Error Handling
        • Globalization and localization
        • Configuration
        • Logging
        • File Providers
        • Dependency Injection
        • Working with Multiple Environments
        • Hosting
        • Managing Application State
        • Request Features
      • ASP.NET Core MVC
        • MVC basics (Model, View, Controller, DI)
        • Model binding and validation
        • View (Razor compilation, Layout, Tag Helpers, Partial Views, DI, View components)
        • Controllers (Route to actions, File uploads)
      • Security and Identity (concepts understanding)
        • Authentication
        • Using identity
        • Authorization with roles
      • Bundle and Minify assets
      • Develop ASP.NET Core MVC apps
      • Advanced topics for ASP.NET Core MVC
        • Application model
        • Filters
        • Areas
        • Application Parts
        • Custom Model Building
        • IActionConstraint
      • Host and deploy ASP.NET Core
      • Migrate from ASP.NET to ASP.NET Core
      • Troubleshoot ASP.NET Core projects
      • Open Web Interface for .NET (OWIN)
      • Web server implementations in ASP.NET Core
    • Web Services
      • REST
      • ASP.NET Web API
        • Routing
        • Configuration
        • Basic error handling
      • Web API-based services
      • Web API Security
      • Token based security
      • SingalR
      • Serialization Frameworks
      • Implement caching
      • gRPC on ASP.NET Core
      • API versioning
      • API documentation
    • Microservices and Cloud
      • Microservices architecture
      • Dockerize a .NET Core application
      • Development workflow for Docker apps
    • JavaScript, HTML, CSS
      • JavaScript: Variables
      • JavaScript: Data types and types conversion
      • JavaScript: Operators
      • JavaScript: Control and Loop constructions
      • JavaScript: Functions, Execution Context and Variables scopes
      • JavaScript: Arrays
      • JavaScript: JS in WebBrowser and basic DOM manipulations
      • HTML: Basic elements
      • CSS: Simple Style rules
      • CSS: selectors
      • Box model
      • HTML: Standards and Browser compatibility
      • HTML: Page Layouts with divs
      • HTML: Frames
      • CSS: Elements positioning and layering
      • CSS: Tables properties
      • CSS: Flexbox
      • Different storage
      • JavaScript: Event Understanding (propagation, capturing, attach/detach)
      • JavaScript: Closure
      • AJAX/JSON
      • Ecma script 6: OOP
      • Promise
      • Strict mode of javascript
    • JavaScript Frameworks
      • Selecting elements
      • Operating on collection
      • Manipulating with elements, working with properties, attributes and data
      • Events
      • animation and effects
      • utilities and Ajax
      • SPA (SINGLE PAGE APPLICATIONS)
      • EcmaScript 6
      • UI frameworks basics:
      • NPM basics:
      • React basics
  • Construction DB
    • SQL
      • Tables, relationships, keys, constraints understanding
      • DDL, DML, DCL understanding
      • SQL data types
      • SQL operators, functions
      • Data manipulation (insert, update, delete)
      • Retrieving data (simple select statement)
      • Joins understanding
      • Creating, modifying, removing database objects
      • Aggregations (ORDER BY, GROUP BY, HAVING, SUM, COUNT, AVG, etc)
      • Combining the results of multiple queries (UNION, EXCEPT, INTERSECT, MINUS, subqueries)
      • Sessions, transactions, locks
      • Isolation levels understanding
      • Implementing stored procedures, user-defined functions, triggers
      • Cursors
    • Data Access Layer
      • Manage connection strings and objects
      • Working with data providers
      • Connect to a data source by using a generic data access interface
      • Handle and diagnose database connection exceptions
      • Manage exceptions when selecting, modifying data
      • Build command objects and query data from data sources
      • Retrieve data source by using the DataReader
      • Manage data by using the DataAdapter and TableAdapter
      • Updating data
      • Entity Framework
        • Query data sources by using EF
        • Code First to existing DB
        • Entity Data Modeling Fundamentals
        • Querying Data
        • Data modification
  • Verification
    • Code Quality
      • MSDN: Guidelines for Names
      • SDO Best Practices Catalog - Coding Standards
      • SDO Best Practices Catalog - Code Review Process
      • SDO Best Practices Catalog - Automatic Code Inspection
      • Automated coding standards enforcement (StyleCop, Resharper)
      • Code Reviews and Toolset
      • Use Work Items (TODO, BUG etc.)
      • Preemptive Error Detection
      • Desirable characteristics of a design (minimal complexity, ease of maintenance, minimal connectednes
      • Creating high quality classes
      • Creating high quality methods
      • Guidelines for initializing variables
      • Exceptions and error handling techniques
      • Best practices of working with data types
      • Code commenting practices
    • Automated Testing (principles, patterns, and practices)
      • Software testing basic concepts
      • Software testing concept
      • Test Case
      • Test Suite
      • Test Plan
      • Testing Levels
      • Naming standards for unit tests
      • Types of test doubles (Stub, Mock, Spy, Fake, Dummy)
      • Basic coverage criteria
      • Testing concepts (Unit vs Functional vs Integration)
      • Goals of Unit Testing, What Makes a Test Valuable?
      • Styles of Unit Testing (Output / State / Collaboration)
      • Good unit test properties
      • F.I.R.S.T Principles of unit testing
      • Test Pyramid concept
      • Testing Pyramid, Agile Testing Pyramid, Diamond
      • Breaking the dependency, Interaction testing
      • Strategies for isolating the database in tests
      • Test smells and how to avoid
      • Test Organization patterns
      • Fixture setup patterns
      • Test double patterns
      • Feature-driven development (FDD)
      • Behavior-driven development (BDD)
      • Test-driven development (TDD)
      • Acceptance testing, Acceptance Test Driven Development (ATDD)
      • Continuous testing
    • Automated Testing (Frameworks, Tools, Libraries)
      • .NET unit test frameworks overview
      • .NET Mocking Frameworks, a comparison
      • xUnit
        • Primary test framework attributes
        • Asserts
        • Exception Handling in Unit Tests
        • Skipping Tests
        • Initialization and Cleanup (Assembly, Class, Test)
        • Data-driven Tests
      • NSubstitute
        • Mocking Method Calls (Using Mock Object, Return Values, Argument Matching)
        • Behavior Verification (Method Was/Not Called, a Specific Number of Times, Getter/Setter Was Called)
        • Throwing exceptions
        • Raising Events from Mock Objects
        • Returning Different Results for Sequential Calls
      • AutoFixture
      • EF Core InMemory test
      • Integration tests in ASP.NET Core
      • Isolating database data in integration tests
      • Test ASP.NET Core MVC apps
  • Configuration Management
    • Product builds and Continuous Integration
      • Automated build concept
      • Dotnet cli
      • CI/CD Basic concepts
    • Managing Versions
      • Fundamental concepts: revisions, working copy, repository, branch, baseline, trunk
      • Versioning Models
      • Distributed Version Control basics
      • Distributed systems advantages and weak sides
      • VCS Management life-cycle on (one of) major tools (clone, commit, update, revert, merge, resolve, et
      • Branching/Merging strategies
      • Blaming (annotate)
      • Revision graph/log actions (Git)
      • Integrating with Issue Tracking Systems
      • Source control Best Practices
Powered by GitBook
On this page
  • Parallel Framework concepts and components
  • Parallel LINQ
  • Exception-Handling Tasks
  • Continuation with Tasks
  • Canceling Tasks
  • Working with AggregateException
  1. Construction Core
  2. Concurrency

Task Parallelism

PreviousAsync basicsNextBasic Synchronization in C#

Last updated 5 years ago

Parallel Framework concepts and components

PFX (Parallel Framework) Concepts

There are two strategies for partitioning work among threads: data parallelism and task parallelism.

When a set of tasks must be performed on many data values, we can parallelize by having each thread perform the (same) set of tasks on a subset of values. This is called data parallelism because we are partitioning the data between threads. In contrast, with task parallelism we partition the tasks; in other words, we have each thread perform a different task.

PFX Components

PFX comprises two layers of functionality. The higher layer consists of two structured data parallelism APIs: and the class. The lower layer contains the task parallelism classes — plus a set of additional constructs to help with parallel programming activities.

PLINQ offers the richest functionality: it automates all the steps of parallelization — including partitioning the work into tasks, executing those tasks on threads, and collating the results into a single output sequence. It’s called declarative — because you simply declare that you want to parallelize your work, and let the Framework take care of the implementation details. In contrast, the other approaches are imperative, in that you need to explicitly write code to partition or collate. In the case of the Parallel class, you must collate results yourself; with the task parallelism constructs, you must partition the work yourself, too.

Parallel LINQ

PLINQ automatically parallelizes local LINQ queries.

To use PLINQ, simply call AsParallel() on the input sequence and then continue the LINQ query as usual.

A side effect of parallelizing the query operators is that when the results are collated, it’s not necessarily in the same order that they were submitted.

If you need order preservation, you can force it by calling AsOrdered() after AsParallel(). Calling AsOrdered incurs a performance hit with large numbers of elements because PLINQ must keep track of each element’s original position.

Exception-Handling Tasks

You still need to exception-handle detached autonomous tasks (unparented tasks that are not waited upon) in order to prevent an unhandled exception taking down the application when the task drops out of scope and is garbage-collected.

TaskCreationOptions atp = TaskCreationOptions.AttachedToParent;
var parent = Task.Factory.StartNew (() => 
{
  Task.Factory.StartNew (() =>   // Child
  {
      Task.Factory.StartNew (() => { throw null; }, atp);   // Grandchild
      }, atp);
  });
          
 // The following call throws a NullReferenceException (wrapped
 // in nested AggregateExceptions):
 parent.Wait();

Continuation with Tasks

Sometimes it’s useful to start a task right after another one completes (or fails). The ContinueWith method on the Task class does exactly this.

By default, a continuation is scheduled unconditionally — whether the antecedent completes, throws an exception, or is canceled. You can alter this behavior via a set of (combinable) flags included within the TaskContinuationOptions enum. The three core flags that control conditional continuation are:

NotOnRanToCompletion = 0x10000,
NotOnFaulted = 0x20000,
NotOnCanceled = 0x40000,

Canceling Tasks

var cancelSource = new CancellationTokenSource();
CancellationToken token = cancelSource.Token;
Task task = Task.Factory.StartNew (() => 
{
  // Do some stuff...
    token.ThrowIfCancellationRequested();  // Check for cancellation request
      // Do some stuff...
}, token);
...
cancelSource.Cancel();

Working with AggregateException

An AggregateException has an InnerExceptions property containing each of the caught exception(s):

try{  
    var query = from i in ParallelEnumerable.Range (0, 1000000) 
                select 100 / i;
    // Enumerate query
  ...
}
catch (AggregateException aex)
{
  foreach (Exception ex in aex.InnerExceptions)
      Console.WriteLine (ex.Message);
}

When you wait for a task to complete, any unhandled exceptions are conveniently rethrown to the caller, wrapped in an object.

For parented tasks, waiting on the parent implicitly waits on the — and any child exceptions then bubble up:

You can optionally pass in a when starting a task. This lets you cancel tasks via the cooperative cancellation pattern:

AggregateException
children
cancellation token
PLINQ
Parallel