KE
  • dotNet Web 3.0
  • Engineering Management
    • Process Planning (SDLC)
      • Software development process
      • Basics of SDLC models
      • Scrum
      • Kanban
      • Scrum vs Kanban: applicability
      • Scrumban
    • Estimation
      • Scope Concept
      • Estimates, Targets, and Commitments
      • Overestimate vs Underestimate
      • Decomposition and Recomposition
      • Analogy-based estimations
      • Estimating in Agile
  • Requirements
    • Software Requirements Engineering
      • Requirement definition
      • Levels of Requirements
      • Most common requirements risks
      • Characteristics of Excellent Requirements
      • Benefits from a High-Quality Requirements Process
      • Root Causes of Project Success and Failure
  • Design
    • OOD
      • Abstraction
      • Encapsulation
      • Inheritance vs Aggregation
      • Modularity
      • Polymorphism
      • Abstraction Qualities (cohesion, coupling, etc)
      • Types vs. Classes
      • Separation of concerns principle
      • SOLID
      • Design Patterns
        • Structural patterns
        • Creational patterns
        • Behavioral patterns
      • Most often used design patterns
      • Software Architecture Patterns (structure, pros & cons)
      • Inversion of Control Containers and the Dependency Injection pattern
      • Domain-Driven Design patterns
      • Anti-patterns
    • DB Design
      • Relational Terminology: Entities
      • Relational terminology: Attributes
      • Relational terminology: Records (Tuples)
      • Relationships (One-to-One, One-to-Many)
      • Understanding ER notation
      • Understanding normalization concept
      • Data Integrity
    • Modeling
      • UML: Basic Diagram Types
      • UML: Use Case Diagram (Essentials)
      • UML: Class Diagram (Essentials)
      • Entity Relationship Diagrams
      • Data Flow Diagrams
    • Security
      • Information security concepts
      • Access Control Lists (ACLs)
      • Access Control Models
      • .NET Cryptography Model
      • ASP.NET Identity
      • OWASP Top 10
      • Cross-Site Request Forgery (XSRF)
      • Protecting against cross-site scripting attacks (XSS)
      • Protecting against buffer overrun attacks
      • Protecting against SQL-injection attacks
      • CSRF/XSRF protection
    • Algorithms
      • Algorithms complexity (understanding, big O notation, complexity of common algorithms)
      • Array sorting methods (bubble sort, quick sort, merge sort)
      • Tree structure (construction, traversal)
      • Binary search algorithm
      • Hash table (creating, collisions)
      • Stack, queue, linked list (construction, understanding, usage)
  • Construction Core
    • Programming language
      • Declare namespaces, classes, interfaces, static and instance class members
      • Types casting
      • Value and reference types. Class vs Struct usage.
      • Properties and automatic properties
      • Structured Exception Handling, Exception filters
      • Collections and Generics
      • Dictionaries. Comparison of Dictionaries
      • Building enumerable types
      • Building cloneable objects
      • Building comparable types
      • Nullable types
      • Delegates, events and lambdas
      • Indexers and operator overloading
      • Anonymous types
      • Extension methods. Practices.
      • Custom Type Conversions (implicit/explicit keywords)
      • Strings and StringBuilder. String concatenation practices. String Interpolation
      • Serialization
      • System.IO namespace
      • LINQ to Objects
      • General Coding conventions for C#
      • Static Using Statement
      • Type Reflection
      • Custom attributes
      • Dispose and Finalizable patterns
      • Garbage collection
      • .Net Diagnostics
      • Implementing logging
      • Exception handling guidelines
      • Regular Expressions
      • Span<T> struct
      • C# - What's new?
      • .NET Standard overview
    • Concurrency
      • Understand differences between Concurrency vs Multi-threading vs Asynchronous
      • Concurrency: An Overview
      • Async basics
      • Task Parallelism
      • Basic Synchronization in C#
      • Deadlock problem
      • QueueBackgroundWorkItem or IHostedService for .NET Core
      • How to run Background Tasks in ASP.NET
    • Refactoring
      • Refactoring Concept (what/when/why)
      • Smells Catalog and possible re-factorings
      • Moving Features Between Objects (basic)
      • Organizing Data (basic)
      • Composing Methods (basic)
      • Simplifying Conditional Expressions (basic)
      • Making Method Calls Simpler
      • Dealing with Generalization
    • Product deploying, software installation
      • Create, configure, and publish a web package (.NET Web Profile)
      • Publishing Web Services
      • Manage packages by using NuGet, NPM and Bower
    • Networking
      • Understanding networks: layers and protocols
      • Basic understanding of TCP/IP model and protocols
      • Defining internet, intranet and VPN
      • Basics of Firewalls and DMZ
      • Application layer protocols basics (HTTP, FTP, Telnet)
      • Understanding HTTP and WWW
      • Basic troubleshooting tools (ICMP, ping, traceroute)
      • Client/Server model
      • Sockets, IP and port addressing
      • Using proxy server
      • File transfer services: FTP, TFTP
      • Name resolution services: DNS, whois
      • Remote access services: Telnet, SSH, rdesktop, VNC
      • The basic difference between HTTP and HTTPS protocols
  • Construction Web
    • Web server applications
      • ASP.NET Core
        • Application startup
        • Middleware
        • Working with Static Files
        • Routing
        • Error Handling
        • Globalization and localization
        • Configuration
        • Logging
        • File Providers
        • Dependency Injection
        • Working with Multiple Environments
        • Hosting
        • Managing Application State
        • Request Features
      • ASP.NET Core MVC
        • MVC basics (Model, View, Controller, DI)
        • Model binding and validation
        • View (Razor compilation, Layout, Tag Helpers, Partial Views, DI, View components)
        • Controllers (Route to actions, File uploads)
      • Security and Identity (concepts understanding)
        • Authentication
        • Using identity
        • Authorization with roles
      • Bundle and Minify assets
      • Develop ASP.NET Core MVC apps
      • Advanced topics for ASP.NET Core MVC
        • Application model
        • Filters
        • Areas
        • Application Parts
        • Custom Model Building
        • IActionConstraint
      • Host and deploy ASP.NET Core
      • Migrate from ASP.NET to ASP.NET Core
      • Troubleshoot ASP.NET Core projects
      • Open Web Interface for .NET (OWIN)
      • Web server implementations in ASP.NET Core
    • Web Services
      • REST
      • ASP.NET Web API
        • Routing
        • Configuration
        • Basic error handling
      • Web API-based services
      • Web API Security
      • Token based security
      • SingalR
      • Serialization Frameworks
      • Implement caching
      • gRPC on ASP.NET Core
      • API versioning
      • API documentation
    • Microservices and Cloud
      • Microservices architecture
      • Dockerize a .NET Core application
      • Development workflow for Docker apps
    • JavaScript, HTML, CSS
      • JavaScript: Variables
      • JavaScript: Data types and types conversion
      • JavaScript: Operators
      • JavaScript: Control and Loop constructions
      • JavaScript: Functions, Execution Context and Variables scopes
      • JavaScript: Arrays
      • JavaScript: JS in WebBrowser and basic DOM manipulations
      • HTML: Basic elements
      • CSS: Simple Style rules
      • CSS: selectors
      • Box model
      • HTML: Standards and Browser compatibility
      • HTML: Page Layouts with divs
      • HTML: Frames
      • CSS: Elements positioning and layering
      • CSS: Tables properties
      • CSS: Flexbox
      • Different storage
      • JavaScript: Event Understanding (propagation, capturing, attach/detach)
      • JavaScript: Closure
      • AJAX/JSON
      • Ecma script 6: OOP
      • Promise
      • Strict mode of javascript
    • JavaScript Frameworks
      • Selecting elements
      • Operating on collection
      • Manipulating with elements, working with properties, attributes and data
      • Events
      • animation and effects
      • utilities and Ajax
      • SPA (SINGLE PAGE APPLICATIONS)
      • EcmaScript 6
      • UI frameworks basics:
      • NPM basics:
      • React basics
  • Construction DB
    • SQL
      • Tables, relationships, keys, constraints understanding
      • DDL, DML, DCL understanding
      • SQL data types
      • SQL operators, functions
      • Data manipulation (insert, update, delete)
      • Retrieving data (simple select statement)
      • Joins understanding
      • Creating, modifying, removing database objects
      • Aggregations (ORDER BY, GROUP BY, HAVING, SUM, COUNT, AVG, etc)
      • Combining the results of multiple queries (UNION, EXCEPT, INTERSECT, MINUS, subqueries)
      • Sessions, transactions, locks
      • Isolation levels understanding
      • Implementing stored procedures, user-defined functions, triggers
      • Cursors
    • Data Access Layer
      • Manage connection strings and objects
      • Working with data providers
      • Connect to a data source by using a generic data access interface
      • Handle and diagnose database connection exceptions
      • Manage exceptions when selecting, modifying data
      • Build command objects and query data from data sources
      • Retrieve data source by using the DataReader
      • Manage data by using the DataAdapter and TableAdapter
      • Updating data
      • Entity Framework
        • Query data sources by using EF
        • Code First to existing DB
        • Entity Data Modeling Fundamentals
        • Querying Data
        • Data modification
  • Verification
    • Code Quality
      • MSDN: Guidelines for Names
      • SDO Best Practices Catalog - Coding Standards
      • SDO Best Practices Catalog - Code Review Process
      • SDO Best Practices Catalog - Automatic Code Inspection
      • Automated coding standards enforcement (StyleCop, Resharper)
      • Code Reviews and Toolset
      • Use Work Items (TODO, BUG etc.)
      • Preemptive Error Detection
      • Desirable characteristics of a design (minimal complexity, ease of maintenance, minimal connectednes
      • Creating high quality classes
      • Creating high quality methods
      • Guidelines for initializing variables
      • Exceptions and error handling techniques
      • Best practices of working with data types
      • Code commenting practices
    • Automated Testing (principles, patterns, and practices)
      • Software testing basic concepts
      • Software testing concept
      • Test Case
      • Test Suite
      • Test Plan
      • Testing Levels
      • Naming standards for unit tests
      • Types of test doubles (Stub, Mock, Spy, Fake, Dummy)
      • Basic coverage criteria
      • Testing concepts (Unit vs Functional vs Integration)
      • Goals of Unit Testing, What Makes a Test Valuable?
      • Styles of Unit Testing (Output / State / Collaboration)
      • Good unit test properties
      • F.I.R.S.T Principles of unit testing
      • Test Pyramid concept
      • Testing Pyramid, Agile Testing Pyramid, Diamond
      • Breaking the dependency, Interaction testing
      • Strategies for isolating the database in tests
      • Test smells and how to avoid
      • Test Organization patterns
      • Fixture setup patterns
      • Test double patterns
      • Feature-driven development (FDD)
      • Behavior-driven development (BDD)
      • Test-driven development (TDD)
      • Acceptance testing, Acceptance Test Driven Development (ATDD)
      • Continuous testing
    • Automated Testing (Frameworks, Tools, Libraries)
      • .NET unit test frameworks overview
      • .NET Mocking Frameworks, a comparison
      • xUnit
        • Primary test framework attributes
        • Asserts
        • Exception Handling in Unit Tests
        • Skipping Tests
        • Initialization and Cleanup (Assembly, Class, Test)
        • Data-driven Tests
      • NSubstitute
        • Mocking Method Calls (Using Mock Object, Return Values, Argument Matching)
        • Behavior Verification (Method Was/Not Called, a Specific Number of Times, Getter/Setter Was Called)
        • Throwing exceptions
        • Raising Events from Mock Objects
        • Returning Different Results for Sequential Calls
      • AutoFixture
      • EF Core InMemory test
      • Integration tests in ASP.NET Core
      • Isolating database data in integration tests
      • Test ASP.NET Core MVC apps
  • Configuration Management
    • Product builds and Continuous Integration
      • Automated build concept
      • Dotnet cli
      • CI/CD Basic concepts
    • Managing Versions
      • Fundamental concepts: revisions, working copy, repository, branch, baseline, trunk
      • Versioning Models
      • Distributed Version Control basics
      • Distributed systems advantages and weak sides
      • VCS Management life-cycle on (one of) major tools (clone, commit, update, revert, merge, resolve, et
      • Branching/Merging strategies
      • Blaming (annotate)
      • Revision graph/log actions (Git)
      • Integrating with Issue Tracking Systems
      • Source control Best Practices
Powered by GitBook
On this page
  • What is SignalR?
  • Transports
  • Hubs
  • Users and groups
  • Publish to Azure
  • Clients
  1. Construction Web
  2. Web Services

SingalR

What is SignalR?

ASP.NET Core SignalR is an open-source library that simplifies adding real-time web functionality to apps. Real-time web functionality enables server-side code to push content to clients instantly.

Good candidates for SignalR:

  • Apps that require high frequency updates from the server. Examples are gaming, social networks, voting, auction, maps, and GPS apps.

  • Dashboards and monitoring apps. Examples include company dashboards, instant sales updates, or travel alerts.

  • Collaborative apps. Whiteboard apps and team meeting software are examples of collaborative apps.

  • Apps that require notifications. Social networks, email, chat, games, travel alerts, and many other apps use notifications.

SignalR provides an API for creating server-to-client remote procedure calls (RPC). The RPCs call JavaScript functions on clients from server-side .NET Core code.

Here are some features of SignalR for ASP.NET Core:

  • Handles connection management automatically.

  • Sends messages to all connected clients simultaneously. For example, a chat room.

  • Sends messages to specific clients or groups of clients.

  • Scales to handle increasing traffic.

Transports

SignalR supports several techniques for handling real-time communications:

  • WebSockets

  • Server-Sent Events

  • Forever Frames

  • Long Polling

SignalR automatically chooses the best transport method that is within the capabilities of the server and client.

Hubs

SignalR uses hubs to communicate between clients and servers.

A hub is a high-level pipeline that allows a client and server to call methods on each other. SignalR handles the dispatching across machine boundaries automatically, allowing clients to call methods on the server and vice versa. You can pass strongly-typed parameters to methods, which enables model binding. SignalR provides two built-in hub protocols: a text protocol based on JSON and a binary protocol based on MessagePack. MessagePack generally creates smaller messages compared to JSON.

Hubs call client-side code by sending messages that contain the name and parameters of the client-side method. Objects sent as method parameters are deserialized using the configured protocol. The client tries to match the name to a method in the client-side code. When the client finds a match, it calls the method and passes to it the deserialized parameter data.

Configure SignalR hubs

The SignalR middleware requires some services, which are configured by calling services.AddSignalR.

services.AddSignalR();

When adding SignalR functionality to an ASP.NET Core app, setup SignalR routes by calling app.UseSignalR in the Startup.Configuremethod.

app.UseSignalR(route =>
{
    route.MapHub<ChatHub>("/chathub");
});

Create and use hubs

Create a hub by declaring a class that inherits from Hub, and add public methods to it. Clients can call methods that are defined as public.

public class ChatHub : Hub
{
    public Task SendMessage(string user, string message)
    {
        return Clients.All.SendAsync("ReceiveMessage", user, message);
    }
}

You can specify a return type and parameters, including complex types and arrays, as you would in any C# method. SignalR handles the serialization and deserialization of complex objects and arrays in your parameters and return values.

Hubs are transient:

  • Don't store state in a property on the hub class. Every hub method call is executed on a new hub instance.

  • Use await when calling asynchronous methods that depend on the hub staying alive. For example, a method such as Clients.All.SendAsync(...) can fail if it's called without await and the hub method completes before SendAsync finishes.

Users and groups

Users in SignalR

SignalR allows you to send messages to all connections associated with a specific user. By default, SignalR uses the ClaimTypes.NameIdentifier from the ClaimsPrincipal associated with the connection as the user identifier. A single user can have multiple connections to a SignalR app. For example, a user could be connected on their desktop as well as their phone. Each device has a separate SignalR connection, but they're all associated with the same user. If a message is sent to the user, all of the connections associated with that user receive the message. The user identifier for a connection can be accessed by the Context.UserIdentifier property in your hub. Send a message to a specific user by passing the user identifier to the User function in your hub method as shown in the following example:

public Task SendPrivateMessage(string user, string message)
{
    return Clients.User(user).SendAsync("ReceiveMessage", message);
}

Groups in SignalR

A group is a collection of connections associated with a name. Messages can be sent to all connections in a group. Groups are the recommended way to send to a connection or multiple connections because the groups are managed by the application. A connection can be a member of multiple groups. This makes groups ideal for something like a chat application, where each room can be represented as a group. Connections can be added to or removed from groups via the AddToGroupAsync and RemoveFromGroupAsync methods.

public async Task AddToGroup(string groupName)
{
    await Groups.AddToGroupAsync(Context.ConnectionId, groupName);
    await Clients.Group(groupName).SendAsync("Send", $"{Context.ConnectionId} has joined the group {groupName}.");
}

public async Task RemoveFromGroup(string groupName)
{
    await Groups.RemoveFromGroupAsync(Context.ConnectionId, groupName);
    await Clients.Group(groupName).SendAsync("Send", $"{Context.ConnectionId} has left the group {groupName}.");
}

Group membership isn't preserved when a connection reconnects. The connection needs to rejoin the group when it's re-established. It's not possible to count the members of a group, since this information is not available if the application is scaled to multiple servers.

To protect access to resources while using groups, use authentication and authorization functionality in ASP.NET Core. If you only add users to a group when the credentials are valid for that group, messages sent to that group will only go to authorized users. However, groups are not a security feature. Authentication claims have features that groups do not, such as expiry and revocation. If a user's permission to access the group is revoked, you have to manually detect that and remove them from the group.

Clients

PreviousToken based securityNextSerialization Frameworks

Last updated 5 years ago

Publish to Azure
SignalR .NET Client
SignalR JavaScript client
SignalR Java client