KE
  • dotNet Web 3.0
  • Engineering Management
    • Process Planning (SDLC)
      • Software development process
      • Basics of SDLC models
      • Scrum
      • Kanban
      • Scrum vs Kanban: applicability
      • Scrumban
    • Estimation
      • Scope Concept
      • Estimates, Targets, and Commitments
      • Overestimate vs Underestimate
      • Decomposition and Recomposition
      • Analogy-based estimations
      • Estimating in Agile
  • Requirements
    • Software Requirements Engineering
      • Requirement definition
      • Levels of Requirements
      • Most common requirements risks
      • Characteristics of Excellent Requirements
      • Benefits from a High-Quality Requirements Process
      • Root Causes of Project Success and Failure
  • Design
    • OOD
      • Abstraction
      • Encapsulation
      • Inheritance vs Aggregation
      • Modularity
      • Polymorphism
      • Abstraction Qualities (cohesion, coupling, etc)
      • Types vs. Classes
      • Separation of concerns principle
      • SOLID
      • Design Patterns
        • Structural patterns
        • Creational patterns
        • Behavioral patterns
      • Most often used design patterns
      • Software Architecture Patterns (structure, pros & cons)
      • Inversion of Control Containers and the Dependency Injection pattern
      • Domain-Driven Design patterns
      • Anti-patterns
    • DB Design
      • Relational Terminology: Entities
      • Relational terminology: Attributes
      • Relational terminology: Records (Tuples)
      • Relationships (One-to-One, One-to-Many)
      • Understanding ER notation
      • Understanding normalization concept
      • Data Integrity
    • Modeling
      • UML: Basic Diagram Types
      • UML: Use Case Diagram (Essentials)
      • UML: Class Diagram (Essentials)
      • Entity Relationship Diagrams
      • Data Flow Diagrams
    • Security
      • Information security concepts
      • Access Control Lists (ACLs)
      • Access Control Models
      • .NET Cryptography Model
      • ASP.NET Identity
      • OWASP Top 10
      • Cross-Site Request Forgery (XSRF)
      • Protecting against cross-site scripting attacks (XSS)
      • Protecting against buffer overrun attacks
      • Protecting against SQL-injection attacks
      • CSRF/XSRF protection
    • Algorithms
      • Algorithms complexity (understanding, big O notation, complexity of common algorithms)
      • Array sorting methods (bubble sort, quick sort, merge sort)
      • Tree structure (construction, traversal)
      • Binary search algorithm
      • Hash table (creating, collisions)
      • Stack, queue, linked list (construction, understanding, usage)
  • Construction Core
    • Programming language
      • Declare namespaces, classes, interfaces, static and instance class members
      • Types casting
      • Value and reference types. Class vs Struct usage.
      • Properties and automatic properties
      • Structured Exception Handling, Exception filters
      • Collections and Generics
      • Dictionaries. Comparison of Dictionaries
      • Building enumerable types
      • Building cloneable objects
      • Building comparable types
      • Nullable types
      • Delegates, events and lambdas
      • Indexers and operator overloading
      • Anonymous types
      • Extension methods. Practices.
      • Custom Type Conversions (implicit/explicit keywords)
      • Strings and StringBuilder. String concatenation practices. String Interpolation
      • Serialization
      • System.IO namespace
      • LINQ to Objects
      • General Coding conventions for C#
      • Static Using Statement
      • Type Reflection
      • Custom attributes
      • Dispose and Finalizable patterns
      • Garbage collection
      • .Net Diagnostics
      • Implementing logging
      • Exception handling guidelines
      • Regular Expressions
      • Span<T> struct
      • C# - What's new?
      • .NET Standard overview
    • Concurrency
      • Understand differences between Concurrency vs Multi-threading vs Asynchronous
      • Concurrency: An Overview
      • Async basics
      • Task Parallelism
      • Basic Synchronization in C#
      • Deadlock problem
      • QueueBackgroundWorkItem or IHostedService for .NET Core
      • How to run Background Tasks in ASP.NET
    • Refactoring
      • Refactoring Concept (what/when/why)
      • Smells Catalog and possible re-factorings
      • Moving Features Between Objects (basic)
      • Organizing Data (basic)
      • Composing Methods (basic)
      • Simplifying Conditional Expressions (basic)
      • Making Method Calls Simpler
      • Dealing with Generalization
    • Product deploying, software installation
      • Create, configure, and publish a web package (.NET Web Profile)
      • Publishing Web Services
      • Manage packages by using NuGet, NPM and Bower
    • Networking
      • Understanding networks: layers and protocols
      • Basic understanding of TCP/IP model and protocols
      • Defining internet, intranet and VPN
      • Basics of Firewalls and DMZ
      • Application layer protocols basics (HTTP, FTP, Telnet)
      • Understanding HTTP and WWW
      • Basic troubleshooting tools (ICMP, ping, traceroute)
      • Client/Server model
      • Sockets, IP and port addressing
      • Using proxy server
      • File transfer services: FTP, TFTP
      • Name resolution services: DNS, whois
      • Remote access services: Telnet, SSH, rdesktop, VNC
      • The basic difference between HTTP and HTTPS protocols
  • Construction Web
    • Web server applications
      • ASP.NET Core
        • Application startup
        • Middleware
        • Working with Static Files
        • Routing
        • Error Handling
        • Globalization and localization
        • Configuration
        • Logging
        • File Providers
        • Dependency Injection
        • Working with Multiple Environments
        • Hosting
        • Managing Application State
        • Request Features
      • ASP.NET Core MVC
        • MVC basics (Model, View, Controller, DI)
        • Model binding and validation
        • View (Razor compilation, Layout, Tag Helpers, Partial Views, DI, View components)
        • Controllers (Route to actions, File uploads)
      • Security and Identity (concepts understanding)
        • Authentication
        • Using identity
        • Authorization with roles
      • Bundle and Minify assets
      • Develop ASP.NET Core MVC apps
      • Advanced topics for ASP.NET Core MVC
        • Application model
        • Filters
        • Areas
        • Application Parts
        • Custom Model Building
        • IActionConstraint
      • Host and deploy ASP.NET Core
      • Migrate from ASP.NET to ASP.NET Core
      • Troubleshoot ASP.NET Core projects
      • Open Web Interface for .NET (OWIN)
      • Web server implementations in ASP.NET Core
    • Web Services
      • REST
      • ASP.NET Web API
        • Routing
        • Configuration
        • Basic error handling
      • Web API-based services
      • Web API Security
      • Token based security
      • SingalR
      • Serialization Frameworks
      • Implement caching
      • gRPC on ASP.NET Core
      • API versioning
      • API documentation
    • Microservices and Cloud
      • Microservices architecture
      • Dockerize a .NET Core application
      • Development workflow for Docker apps
    • JavaScript, HTML, CSS
      • JavaScript: Variables
      • JavaScript: Data types and types conversion
      • JavaScript: Operators
      • JavaScript: Control and Loop constructions
      • JavaScript: Functions, Execution Context and Variables scopes
      • JavaScript: Arrays
      • JavaScript: JS in WebBrowser and basic DOM manipulations
      • HTML: Basic elements
      • CSS: Simple Style rules
      • CSS: selectors
      • Box model
      • HTML: Standards and Browser compatibility
      • HTML: Page Layouts with divs
      • HTML: Frames
      • CSS: Elements positioning and layering
      • CSS: Tables properties
      • CSS: Flexbox
      • Different storage
      • JavaScript: Event Understanding (propagation, capturing, attach/detach)
      • JavaScript: Closure
      • AJAX/JSON
      • Ecma script 6: OOP
      • Promise
      • Strict mode of javascript
    • JavaScript Frameworks
      • Selecting elements
      • Operating on collection
      • Manipulating with elements, working with properties, attributes and data
      • Events
      • animation and effects
      • utilities and Ajax
      • SPA (SINGLE PAGE APPLICATIONS)
      • EcmaScript 6
      • UI frameworks basics:
      • NPM basics:
      • React basics
  • Construction DB
    • SQL
      • Tables, relationships, keys, constraints understanding
      • DDL, DML, DCL understanding
      • SQL data types
      • SQL operators, functions
      • Data manipulation (insert, update, delete)
      • Retrieving data (simple select statement)
      • Joins understanding
      • Creating, modifying, removing database objects
      • Aggregations (ORDER BY, GROUP BY, HAVING, SUM, COUNT, AVG, etc)
      • Combining the results of multiple queries (UNION, EXCEPT, INTERSECT, MINUS, subqueries)
      • Sessions, transactions, locks
      • Isolation levels understanding
      • Implementing stored procedures, user-defined functions, triggers
      • Cursors
    • Data Access Layer
      • Manage connection strings and objects
      • Working with data providers
      • Connect to a data source by using a generic data access interface
      • Handle and diagnose database connection exceptions
      • Manage exceptions when selecting, modifying data
      • Build command objects and query data from data sources
      • Retrieve data source by using the DataReader
      • Manage data by using the DataAdapter and TableAdapter
      • Updating data
      • Entity Framework
        • Query data sources by using EF
        • Code First to existing DB
        • Entity Data Modeling Fundamentals
        • Querying Data
        • Data modification
  • Verification
    • Code Quality
      • MSDN: Guidelines for Names
      • SDO Best Practices Catalog - Coding Standards
      • SDO Best Practices Catalog - Code Review Process
      • SDO Best Practices Catalog - Automatic Code Inspection
      • Automated coding standards enforcement (StyleCop, Resharper)
      • Code Reviews and Toolset
      • Use Work Items (TODO, BUG etc.)
      • Preemptive Error Detection
      • Desirable characteristics of a design (minimal complexity, ease of maintenance, minimal connectednes
      • Creating high quality classes
      • Creating high quality methods
      • Guidelines for initializing variables
      • Exceptions and error handling techniques
      • Best practices of working with data types
      • Code commenting practices
    • Automated Testing (principles, patterns, and practices)
      • Software testing basic concepts
      • Software testing concept
      • Test Case
      • Test Suite
      • Test Plan
      • Testing Levels
      • Naming standards for unit tests
      • Types of test doubles (Stub, Mock, Spy, Fake, Dummy)
      • Basic coverage criteria
      • Testing concepts (Unit vs Functional vs Integration)
      • Goals of Unit Testing, What Makes a Test Valuable?
      • Styles of Unit Testing (Output / State / Collaboration)
      • Good unit test properties
      • F.I.R.S.T Principles of unit testing
      • Test Pyramid concept
      • Testing Pyramid, Agile Testing Pyramid, Diamond
      • Breaking the dependency, Interaction testing
      • Strategies for isolating the database in tests
      • Test smells and how to avoid
      • Test Organization patterns
      • Fixture setup patterns
      • Test double patterns
      • Feature-driven development (FDD)
      • Behavior-driven development (BDD)
      • Test-driven development (TDD)
      • Acceptance testing, Acceptance Test Driven Development (ATDD)
      • Continuous testing
    • Automated Testing (Frameworks, Tools, Libraries)
      • .NET unit test frameworks overview
      • .NET Mocking Frameworks, a comparison
      • xUnit
        • Primary test framework attributes
        • Asserts
        • Exception Handling in Unit Tests
        • Skipping Tests
        • Initialization and Cleanup (Assembly, Class, Test)
        • Data-driven Tests
      • NSubstitute
        • Mocking Method Calls (Using Mock Object, Return Values, Argument Matching)
        • Behavior Verification (Method Was/Not Called, a Specific Number of Times, Getter/Setter Was Called)
        • Throwing exceptions
        • Raising Events from Mock Objects
        • Returning Different Results for Sequential Calls
      • AutoFixture
      • EF Core InMemory test
      • Integration tests in ASP.NET Core
      • Isolating database data in integration tests
      • Test ASP.NET Core MVC apps
  • Configuration Management
    • Product builds and Continuous Integration
      • Automated build concept
      • Dotnet cli
      • CI/CD Basic concepts
    • Managing Versions
      • Fundamental concepts: revisions, working copy, repository, branch, baseline, trunk
      • Versioning Models
      • Distributed Version Control basics
      • Distributed systems advantages and weak sides
      • VCS Management life-cycle on (one of) major tools (clone, commit, update, revert, merge, resolve, et
      • Branching/Merging strategies
      • Blaming (annotate)
      • Revision graph/log actions (Git)
      • Integrating with Issue Tracking Systems
      • Source control Best Practices
Powered by GitBook
On this page
  • Basic queries
  • Load related data (joins, include vs thenInclude)
  • Client vs server query evaluation
  • Tracking vs. No-Tracking
  • Raw SQL
  • How query works (when execution of query performed)
  • Tagging Query
  1. Construction DB
  2. Data Access Layer
  3. Entity Framework

Querying Data

Basic queries

using (var context = new BookStore())
{
    var books = context.Books
        .Where(b => b.Title.Contains("C#"))
        .ToList();
}

Load related data (joins, include vs thenInclude)

Entity Framework Core allows you to use the navigation properties in your model to load related entities.

There are three common ORM patterns used to load related data:

  1. Eager loading means that the related data is loaded from the database as part of the initial query.

  2. Explicit loading means that the related data is explicitly loaded from the database at a later time.

  3. Lazy loading means that the related data is transparently loaded from the database when the navigation property is accessed.

Joins

using (var context = new BloggingContext())
{
   var query = db.Categories         // source
      .Join(db.CategoryMaps,         // target
         c => c.CategoryId,          // FK
         cm => cm.ChildCategoryId,   // PK
         (c, cm) => new { Category = c, CategoryMaps = cm }) // project result
      .Select(x => x.Category);  // select result
}

Eager loading

You can use the Include method to specify related data to be included in query results. In the following example, the blogs that are returned in the results will have their Posts property populated with the related posts.

using (var context = new BloggingContext())
{
    var blogs = context.Blogs
        .Include(blog => blog.Posts)
        .Include(blog => blog.Owner)
        .ToList();
}

You can drill down through relationships to include multiple levels of related data using the ThenInclude method. The following example loads all blogs, their related posts, and the author of each post.

using (var context = new BloggingContext())
{
    var blogs = context.Blogs
        .Include(blog => blog.Posts)
            .ThenInclude(post => post.Author)
        .ToList();
}

You can chain multiple calls to ThenInclude to continue including further levels of related data.

Explicit loading

You can explicitly load a navigation property via the DbContext.Entry(...) API.

using (var context = new BloggingContext())
{
    var blog = context.Blogs
        .Single(b => b.BlogId == 1);

    context.Entry(blog)
        .Collection(b => b.Posts)
        .Load();

    context.Entry(blog)
        .Reference(b => b.Owner)
        .Load();
}

Lazy loading

This feature was introduced in EF Core 2.1

The simplest way to use lazy-loading is by installing the Microsoft.EntityFrameworkCore.Proxies package and enabling it with a call to UseLazyLoadingProxies. For example:

protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
    => optionsBuilder
        .UseLazyLoadingProxies()
        .UseSqlServer(myConnectionString);

Client vs server query evaluation

Entity Framework Core supports parts of the query being evaluated on the client and parts of it being pushed to the database. It is up to the database provider to determine which parts of the query will be evaluated in the database.

Client evaluation

In the following example a helper method is used to standardize URLs for blogs that are returned from a SQL Server database. Because the SQL Server provider has no insight into how this method is implemented, it is not possible to translate it into SQL. All other aspects of the query are evaluated in the database, but passing the returned URL through this method is performed on the client.

var blogs = context.Blogs
    .OrderByDescending(blog => blog.Rating)
    .Select(blog => new
    {
        Id = blog.BlogId,
        Url = StandardizeUrl(blog.Url)
    })
    .ToList();
public static string StandardizeUrl(string url)
{
    url = url.ToLower();

    if (!url.StartsWith("http://"))
    {
        url = string.Concat("http://", url);
    }

    return url;
}

While client evaluation can be very useful, in some instances it can result in poor performance.

Tracking vs. No-Tracking

Tracking behavior controls whether or not Entity Framework Core will keep information about an entity instance in its change tracker. If an entity is tracked, any changes detected in the entity will be persisted to the database during SaveChanges(). Entity Framework Core will also fix-up navigation properties between entities that are obtained from a tracking query and entities that were previously loaded into the DbContext instance.

Tracking queries

By default, queries that return entity types are tracking. This means you can make changes to those entity instances and have those changes persisted by SaveChanges().

using (var context = new BloggingContext())
{
    var blog = context.Blogs.SingleOrDefault(b => b.BlogId == 1);
    blog.Rating = 5;
    context.SaveChanges();
}

No-tracking queries

No tracking queries are useful when the results are used in a read-only scenario. They are quicker to execute because there is no need to setup change tracking information.

using (var context = new BloggingContext())
{
    var blogs = context.Blogs
        .AsNoTracking()
        .ToList();
}

Raw SQL

Entity Framework Core allows you to drop down to raw SQL queries when working with a relational database. This can be useful if the query you want to perform can't be expressed using LINQ.

var blogs = context.Blogs
    .FromSql("SELECT * FROM dbo.Blogs")
    .ToList();

You can also pass parameters there:

var user = "johndoe";

var blogs = context.Blogs
    .FromSql("EXECUTE dbo.GetMostPopularBlogsForUser {0}", user)
    .ToList();

How query works (when execution of query performed)

The life of a query

The following is a high level overview of the process each query goes through:

  1. The LINQ query is processed by EF Core to build a representation that is ready to be processed by the database provider (the results are cached).

  2. The result is passed to the database provider, who identifies which parts of the query can be evaluated in the database, translates them to database specific query language and sends to the database.

  3. For each item in the result set EF checks if the data represents an entity already in the change tracker (if needed).

When queries are executed

When you call LINQ operators, you are simply building up an in-memory representation of the query. The query is only sent to the database when the results are consumed.

The most common operations that result in the query being sent to the database are:

  • Iterating the results in a for loop

  • Using an operator such as ToList, ToArray, Single, Count

  • Databinding the results of a query to a UI

Tagging Query

This feature is new in EF Core 2.2.

This feature helps correlate LINQ queries in code with generated SQL queries captured in logs. You annotate a LINQ query using the new TagWith() method:

  var nearestFriends =
      (from f in context.Friends.TagWith("This is my spatial query!")
      orderby f.Location.Distance(myLocation) descending
      select f).Take(5).ToList();

This LINQ query is translated to the following SQL statement:

-- This is my spatial query!

SELECT TOP(@__p_1) [f].[Name], [f].[Location]
FROM [Friends] AS [f]
ORDER BY [f].[Location].STDistance(@__myLocation_0) DESC

It's possible to call TagWith() many times on the same query. Query tags are cumulative.

PreviousEntity Data Modeling FundamentalsNextData modification

Last updated 5 years ago