KE
  • dotNet Web 3.0
  • Engineering Management
    • Process Planning (SDLC)
      • Software development process
      • Basics of SDLC models
      • Scrum
      • Kanban
      • Scrum vs Kanban: applicability
      • Scrumban
    • Estimation
      • Scope Concept
      • Estimates, Targets, and Commitments
      • Overestimate vs Underestimate
      • Decomposition and Recomposition
      • Analogy-based estimations
      • Estimating in Agile
  • Requirements
    • Software Requirements Engineering
      • Requirement definition
      • Levels of Requirements
      • Most common requirements risks
      • Characteristics of Excellent Requirements
      • Benefits from a High-Quality Requirements Process
      • Root Causes of Project Success and Failure
  • Design
    • OOD
      • Abstraction
      • Encapsulation
      • Inheritance vs Aggregation
      • Modularity
      • Polymorphism
      • Abstraction Qualities (cohesion, coupling, etc)
      • Types vs. Classes
      • Separation of concerns principle
      • SOLID
      • Design Patterns
        • Structural patterns
        • Creational patterns
        • Behavioral patterns
      • Most often used design patterns
      • Software Architecture Patterns (structure, pros & cons)
      • Inversion of Control Containers and the Dependency Injection pattern
      • Domain-Driven Design patterns
      • Anti-patterns
    • DB Design
      • Relational Terminology: Entities
      • Relational terminology: Attributes
      • Relational terminology: Records (Tuples)
      • Relationships (One-to-One, One-to-Many)
      • Understanding ER notation
      • Understanding normalization concept
      • Data Integrity
    • Modeling
      • UML: Basic Diagram Types
      • UML: Use Case Diagram (Essentials)
      • UML: Class Diagram (Essentials)
      • Entity Relationship Diagrams
      • Data Flow Diagrams
    • Security
      • Information security concepts
      • Access Control Lists (ACLs)
      • Access Control Models
      • .NET Cryptography Model
      • ASP.NET Identity
      • OWASP Top 10
      • Cross-Site Request Forgery (XSRF)
      • Protecting against cross-site scripting attacks (XSS)
      • Protecting against buffer overrun attacks
      • Protecting against SQL-injection attacks
      • CSRF/XSRF protection
    • Algorithms
      • Algorithms complexity (understanding, big O notation, complexity of common algorithms)
      • Array sorting methods (bubble sort, quick sort, merge sort)
      • Tree structure (construction, traversal)
      • Binary search algorithm
      • Hash table (creating, collisions)
      • Stack, queue, linked list (construction, understanding, usage)
  • Construction Core
    • Programming language
      • Declare namespaces, classes, interfaces, static and instance class members
      • Types casting
      • Value and reference types. Class vs Struct usage.
      • Properties and automatic properties
      • Structured Exception Handling, Exception filters
      • Collections and Generics
      • Dictionaries. Comparison of Dictionaries
      • Building enumerable types
      • Building cloneable objects
      • Building comparable types
      • Nullable types
      • Delegates, events and lambdas
      • Indexers and operator overloading
      • Anonymous types
      • Extension methods. Practices.
      • Custom Type Conversions (implicit/explicit keywords)
      • Strings and StringBuilder. String concatenation practices. String Interpolation
      • Serialization
      • System.IO namespace
      • LINQ to Objects
      • General Coding conventions for C#
      • Static Using Statement
      • Type Reflection
      • Custom attributes
      • Dispose and Finalizable patterns
      • Garbage collection
      • .Net Diagnostics
      • Implementing logging
      • Exception handling guidelines
      • Regular Expressions
      • Span<T> struct
      • C# - What's new?
      • .NET Standard overview
    • Concurrency
      • Understand differences between Concurrency vs Multi-threading vs Asynchronous
      • Concurrency: An Overview
      • Async basics
      • Task Parallelism
      • Basic Synchronization in C#
      • Deadlock problem
      • QueueBackgroundWorkItem or IHostedService for .NET Core
      • How to run Background Tasks in ASP.NET
    • Refactoring
      • Refactoring Concept (what/when/why)
      • Smells Catalog and possible re-factorings
      • Moving Features Between Objects (basic)
      • Organizing Data (basic)
      • Composing Methods (basic)
      • Simplifying Conditional Expressions (basic)
      • Making Method Calls Simpler
      • Dealing with Generalization
    • Product deploying, software installation
      • Create, configure, and publish a web package (.NET Web Profile)
      • Publishing Web Services
      • Manage packages by using NuGet, NPM and Bower
    • Networking
      • Understanding networks: layers and protocols
      • Basic understanding of TCP/IP model and protocols
      • Defining internet, intranet and VPN
      • Basics of Firewalls and DMZ
      • Application layer protocols basics (HTTP, FTP, Telnet)
      • Understanding HTTP and WWW
      • Basic troubleshooting tools (ICMP, ping, traceroute)
      • Client/Server model
      • Sockets, IP and port addressing
      • Using proxy server
      • File transfer services: FTP, TFTP
      • Name resolution services: DNS, whois
      • Remote access services: Telnet, SSH, rdesktop, VNC
      • The basic difference between HTTP and HTTPS protocols
  • Construction Web
    • Web server applications
      • ASP.NET Core
        • Application startup
        • Middleware
        • Working with Static Files
        • Routing
        • Error Handling
        • Globalization and localization
        • Configuration
        • Logging
        • File Providers
        • Dependency Injection
        • Working with Multiple Environments
        • Hosting
        • Managing Application State
        • Request Features
      • ASP.NET Core MVC
        • MVC basics (Model, View, Controller, DI)
        • Model binding and validation
        • View (Razor compilation, Layout, Tag Helpers, Partial Views, DI, View components)
        • Controllers (Route to actions, File uploads)
      • Security and Identity (concepts understanding)
        • Authentication
        • Using identity
        • Authorization with roles
      • Bundle and Minify assets
      • Develop ASP.NET Core MVC apps
      • Advanced topics for ASP.NET Core MVC
        • Application model
        • Filters
        • Areas
        • Application Parts
        • Custom Model Building
        • IActionConstraint
      • Host and deploy ASP.NET Core
      • Migrate from ASP.NET to ASP.NET Core
      • Troubleshoot ASP.NET Core projects
      • Open Web Interface for .NET (OWIN)
      • Web server implementations in ASP.NET Core
    • Web Services
      • REST
      • ASP.NET Web API
        • Routing
        • Configuration
        • Basic error handling
      • Web API-based services
      • Web API Security
      • Token based security
      • SingalR
      • Serialization Frameworks
      • Implement caching
      • gRPC on ASP.NET Core
      • API versioning
      • API documentation
    • Microservices and Cloud
      • Microservices architecture
      • Dockerize a .NET Core application
      • Development workflow for Docker apps
    • JavaScript, HTML, CSS
      • JavaScript: Variables
      • JavaScript: Data types and types conversion
      • JavaScript: Operators
      • JavaScript: Control and Loop constructions
      • JavaScript: Functions, Execution Context and Variables scopes
      • JavaScript: Arrays
      • JavaScript: JS in WebBrowser and basic DOM manipulations
      • HTML: Basic elements
      • CSS: Simple Style rules
      • CSS: selectors
      • Box model
      • HTML: Standards and Browser compatibility
      • HTML: Page Layouts with divs
      • HTML: Frames
      • CSS: Elements positioning and layering
      • CSS: Tables properties
      • CSS: Flexbox
      • Different storage
      • JavaScript: Event Understanding (propagation, capturing, attach/detach)
      • JavaScript: Closure
      • AJAX/JSON
      • Ecma script 6: OOP
      • Promise
      • Strict mode of javascript
    • JavaScript Frameworks
      • Selecting elements
      • Operating on collection
      • Manipulating with elements, working with properties, attributes and data
      • Events
      • animation and effects
      • utilities and Ajax
      • SPA (SINGLE PAGE APPLICATIONS)
      • EcmaScript 6
      • UI frameworks basics:
      • NPM basics:
      • React basics
  • Construction DB
    • SQL
      • Tables, relationships, keys, constraints understanding
      • DDL, DML, DCL understanding
      • SQL data types
      • SQL operators, functions
      • Data manipulation (insert, update, delete)
      • Retrieving data (simple select statement)
      • Joins understanding
      • Creating, modifying, removing database objects
      • Aggregations (ORDER BY, GROUP BY, HAVING, SUM, COUNT, AVG, etc)
      • Combining the results of multiple queries (UNION, EXCEPT, INTERSECT, MINUS, subqueries)
      • Sessions, transactions, locks
      • Isolation levels understanding
      • Implementing stored procedures, user-defined functions, triggers
      • Cursors
    • Data Access Layer
      • Manage connection strings and objects
      • Working with data providers
      • Connect to a data source by using a generic data access interface
      • Handle and diagnose database connection exceptions
      • Manage exceptions when selecting, modifying data
      • Build command objects and query data from data sources
      • Retrieve data source by using the DataReader
      • Manage data by using the DataAdapter and TableAdapter
      • Updating data
      • Entity Framework
        • Query data sources by using EF
        • Code First to existing DB
        • Entity Data Modeling Fundamentals
        • Querying Data
        • Data modification
  • Verification
    • Code Quality
      • MSDN: Guidelines for Names
      • SDO Best Practices Catalog - Coding Standards
      • SDO Best Practices Catalog - Code Review Process
      • SDO Best Practices Catalog - Automatic Code Inspection
      • Automated coding standards enforcement (StyleCop, Resharper)
      • Code Reviews and Toolset
      • Use Work Items (TODO, BUG etc.)
      • Preemptive Error Detection
      • Desirable characteristics of a design (minimal complexity, ease of maintenance, minimal connectednes
      • Creating high quality classes
      • Creating high quality methods
      • Guidelines for initializing variables
      • Exceptions and error handling techniques
      • Best practices of working with data types
      • Code commenting practices
    • Automated Testing (principles, patterns, and practices)
      • Software testing basic concepts
      • Software testing concept
      • Test Case
      • Test Suite
      • Test Plan
      • Testing Levels
      • Naming standards for unit tests
      • Types of test doubles (Stub, Mock, Spy, Fake, Dummy)
      • Basic coverage criteria
      • Testing concepts (Unit vs Functional vs Integration)
      • Goals of Unit Testing, What Makes a Test Valuable?
      • Styles of Unit Testing (Output / State / Collaboration)
      • Good unit test properties
      • F.I.R.S.T Principles of unit testing
      • Test Pyramid concept
      • Testing Pyramid, Agile Testing Pyramid, Diamond
      • Breaking the dependency, Interaction testing
      • Strategies for isolating the database in tests
      • Test smells and how to avoid
      • Test Organization patterns
      • Fixture setup patterns
      • Test double patterns
      • Feature-driven development (FDD)
      • Behavior-driven development (BDD)
      • Test-driven development (TDD)
      • Acceptance testing, Acceptance Test Driven Development (ATDD)
      • Continuous testing
    • Automated Testing (Frameworks, Tools, Libraries)
      • .NET unit test frameworks overview
      • .NET Mocking Frameworks, a comparison
      • xUnit
        • Primary test framework attributes
        • Asserts
        • Exception Handling in Unit Tests
        • Skipping Tests
        • Initialization and Cleanup (Assembly, Class, Test)
        • Data-driven Tests
      • NSubstitute
        • Mocking Method Calls (Using Mock Object, Return Values, Argument Matching)
        • Behavior Verification (Method Was/Not Called, a Specific Number of Times, Getter/Setter Was Called)
        • Throwing exceptions
        • Raising Events from Mock Objects
        • Returning Different Results for Sequential Calls
      • AutoFixture
      • EF Core InMemory test
      • Integration tests in ASP.NET Core
      • Isolating database data in integration tests
      • Test ASP.NET Core MVC apps
  • Configuration Management
    • Product builds and Continuous Integration
      • Automated build concept
      • Dotnet cli
      • CI/CD Basic concepts
    • Managing Versions
      • Fundamental concepts: revisions, working copy, repository, branch, baseline, trunk
      • Versioning Models
      • Distributed Version Control basics
      • Distributed systems advantages and weak sides
      • VCS Management life-cycle on (one of) major tools (clone, commit, update, revert, merge, resolve, et
      • Branching/Merging strategies
      • Blaming (annotate)
      • Revision graph/log actions (Git)
      • Integrating with Issue Tracking Systems
      • Source control Best Practices
Powered by GitBook
On this page
  • Example of reading configuration using JSON provider
  • Retrieve Configuration Data at controller
  • Get Configuration object using options pattern
  • Working with In-memory provider
  1. Construction Web
  2. Web Services
  3. ASP.NET Web API

Configuration

ASP.NET Core supports many methods of configuration. In ASP.NET Core application, the configuration is stored in name-value pairs and it can be read at runtime from various parts of the application. The name-value pairs may be grouped into multi-level hierarchy. The application configuration data may come from

  • File, such as JSON, XML, INI

  • Environment variables

  • Command

  • Line arguments

  • An in-memory collection

  • Custom providers

Configuration System in ASP.NET Core is restructured from the older version of ASP.NET. The older version uses "System.Configuration" namespace and is able to read XML configuration file such as web.config. The new configuration model can be accessed to the key/value based settings and it can retrieve various sources, such as JSON, XML and INI.

Example of reading configuration using JSON provider

Generally, configuration remains in simple key/value structure or might in hierarchical structure when using external files. Consider the following appsetting.json file for this example.

{  
    "status" : "This Status read from appSettings.json file",  
    "ConnectionStrings": {  
        "DefaultConnection": "Server=.\\sqlexpress;Database=Test;Trusted_Connection=True;MultipleActiveResultSets=true"  
    }  
}

The AddJsonFile method of JsonConfigurationExtensions class is used to JSON file to builder. We can get simple configuration value by using key name. If configuration value is in hierarchical structure, it can be retrieved using a : seperated key, starting from root of the hierarchy. In this example, if we want to get value for DefaultConnection, then the key becomes ConnectionStrings:DefaultConnection.

public class Startup 
{  
        public IConfiguration Configuration { get; set; }  
        public Startup() 
        {   
         var builder = new ConfigurationBuilder()     
            .AddJsonFile("appSettings.json");   
         Configuration = builder.Build();   
        }   
         
        public void ConfigureServices(IServiceCollection services)  
        {             
            services.AddMvc();  
        } 
         
        public void Configure(IApplicationBuilder app)
        {  
            app.UseMvc();     
            app.Run(context => {  
                var status = Configuration["status"];   
                var connectionString = Configuration["ConnectionStrings:DefaultConnection"];   
            });   
        }  
}

Retrieve Configuration Data at controller

In the above mentioned example, I am retrieving the configuration value in startup class itself. The new version of ASP.NET has built-in support for dependency injection. Using DI, we can inject the value of configuration to the Controller.

Using AddSingleton method of ServiceCollectionServiceExtensions class, we can add a singleton service of the specified type with an instance of service.

Startup.cs
public void ConfigureServices(IServiceCollection services)  
{             
            services.AddMvc();  
            services.AddSingleton<IConfiguration>(Configuration);  
} 
HomeController.cs
public class HomeController : Controller  
{  
    IConfiguration _configuration;  
    public HomeController(IConfiguration configuration)  
    {  
        _configuration = configuration;  
    }  
    
    [Route("home/index")]  
    public IActionResult Index()  
    {  
        ViewBag.connectionstring = _configuration["ConnectionStrings:DefaultConnection"];  
        return View();  
    }  
} 

Get Configuration object using options pattern

The Options pattern enables us to use custom option classes to represent a group of related settings. The Option class must have public read-write property that is defined for each setting and the class must not take any parameters. The Microsoft.Extensions.Options.ConfigurationExtensions dependency contains the extension method for IServiceCollection.Configure.

Here, I have defined my model and I am using same appsetting.json that was used in previous example. In this example, I have bound the connection string setting of appsetting.json with my model class.

public class ConnectionString   
{  
    public ConnectionString()  {  }  
    public string DefaultConnection { get; set; }  
    public string MainDBConnectionString { get; set; }  
} 

In the following code, IConfigureOptions service is added to the Service Container. It binds ConnectionStrings class to the section ConnectionStrings of the appsettings.json file.

Startup.cs
public void ConfigureServices(IServiceCollection services)  
{              
    services.AddOptions();  
      
    //Configure Option using Extensions method  
    services.Configure<ConnectionString>(Configuration.GetSection("ConnectionStrings"));  
      
    services.AddSingleton<IConfiguration>(Configuration);  
}

Working with In-memory provider

The new configuration framework of ASP.NET Core does also support in-memory configuration. In this type of configuration, the values are directly stored into the code and the later part of application uses this configuration. Following is a sample that shows how to use the in-memory provider and bind to a class.

public Startup()  
{  
        var builder = new ConfigurationBuilder();  
  
        var dic = new Dictionary<string, string>  
        {  
            {"Profile:FirstName", "Jignesh"},  
            {"Profile:LastName", "Trivedi"},  
            {"Profile:Designation", "PL"}  
        };  
        builder.AddInMemoryCollection(dic);  
        Configuration = builder.Build();  
}

Using Configuration["Profile:FirstName"], we can get the value of firstname of profile configuration. We can also bind this value with custom model. Her,e I have created the following “Profile” class to bind this profile value.

public class Profile  
{  
    public string FirstName { get; set;}  
    public string LastName { get; set;}  
    public string Designation { get; set;}  
} 

The following sample shows how to bind to a profile and use the options pattern with ASP.NET Core MVC application.

Startup.cs
public void ConfigureServices(IServiceCollection services)  
{  
    services.AddOptions();  
    services.Configure<Profile>(Configuration.GetSection("Profile"));  
    services.AddMvc();  
}
HomeController.cs
public class HomeController : Controller  
{  
    Profile _profile;  
    public HomeController(IOptions<Profile> Profile)  
    {  
        _profile = Profile.Value;  
    }  
    [Route("home/index")]  
    public IActionResult Index()  
    {  
        ViewBag.FirstName = _profile.FirstName;  
        return View();  
    }  
} 
PreviousRoutingNextBasic error handling

Last updated 5 years ago