KE
  • dotNet Web 3.0
  • Engineering Management
    • Process Planning (SDLC)
      • Software development process
      • Basics of SDLC models
      • Scrum
      • Kanban
      • Scrum vs Kanban: applicability
      • Scrumban
    • Estimation
      • Scope Concept
      • Estimates, Targets, and Commitments
      • Overestimate vs Underestimate
      • Decomposition and Recomposition
      • Analogy-based estimations
      • Estimating in Agile
  • Requirements
    • Software Requirements Engineering
      • Requirement definition
      • Levels of Requirements
      • Most common requirements risks
      • Characteristics of Excellent Requirements
      • Benefits from a High-Quality Requirements Process
      • Root Causes of Project Success and Failure
  • Design
    • OOD
      • Abstraction
      • Encapsulation
      • Inheritance vs Aggregation
      • Modularity
      • Polymorphism
      • Abstraction Qualities (cohesion, coupling, etc)
      • Types vs. Classes
      • Separation of concerns principle
      • SOLID
      • Design Patterns
        • Structural patterns
        • Creational patterns
        • Behavioral patterns
      • Most often used design patterns
      • Software Architecture Patterns (structure, pros & cons)
      • Inversion of Control Containers and the Dependency Injection pattern
      • Domain-Driven Design patterns
      • Anti-patterns
    • DB Design
      • Relational Terminology: Entities
      • Relational terminology: Attributes
      • Relational terminology: Records (Tuples)
      • Relationships (One-to-One, One-to-Many)
      • Understanding ER notation
      • Understanding normalization concept
      • Data Integrity
    • Modeling
      • UML: Basic Diagram Types
      • UML: Use Case Diagram (Essentials)
      • UML: Class Diagram (Essentials)
      • Entity Relationship Diagrams
      • Data Flow Diagrams
    • Security
      • Information security concepts
      • Access Control Lists (ACLs)
      • Access Control Models
      • .NET Cryptography Model
      • ASP.NET Identity
      • OWASP Top 10
      • Cross-Site Request Forgery (XSRF)
      • Protecting against cross-site scripting attacks (XSS)
      • Protecting against buffer overrun attacks
      • Protecting against SQL-injection attacks
      • CSRF/XSRF protection
    • Algorithms
      • Algorithms complexity (understanding, big O notation, complexity of common algorithms)
      • Array sorting methods (bubble sort, quick sort, merge sort)
      • Tree structure (construction, traversal)
      • Binary search algorithm
      • Hash table (creating, collisions)
      • Stack, queue, linked list (construction, understanding, usage)
  • Construction Core
    • Programming language
      • Declare namespaces, classes, interfaces, static and instance class members
      • Types casting
      • Value and reference types. Class vs Struct usage.
      • Properties and automatic properties
      • Structured Exception Handling, Exception filters
      • Collections and Generics
      • Dictionaries. Comparison of Dictionaries
      • Building enumerable types
      • Building cloneable objects
      • Building comparable types
      • Nullable types
      • Delegates, events and lambdas
      • Indexers and operator overloading
      • Anonymous types
      • Extension methods. Practices.
      • Custom Type Conversions (implicit/explicit keywords)
      • Strings and StringBuilder. String concatenation practices. String Interpolation
      • Serialization
      • System.IO namespace
      • LINQ to Objects
      • General Coding conventions for C#
      • Static Using Statement
      • Type Reflection
      • Custom attributes
      • Dispose and Finalizable patterns
      • Garbage collection
      • .Net Diagnostics
      • Implementing logging
      • Exception handling guidelines
      • Regular Expressions
      • Span<T> struct
      • C# - What's new?
      • .NET Standard overview
    • Concurrency
      • Understand differences between Concurrency vs Multi-threading vs Asynchronous
      • Concurrency: An Overview
      • Async basics
      • Task Parallelism
      • Basic Synchronization in C#
      • Deadlock problem
      • QueueBackgroundWorkItem or IHostedService for .NET Core
      • How to run Background Tasks in ASP.NET
    • Refactoring
      • Refactoring Concept (what/when/why)
      • Smells Catalog and possible re-factorings
      • Moving Features Between Objects (basic)
      • Organizing Data (basic)
      • Composing Methods (basic)
      • Simplifying Conditional Expressions (basic)
      • Making Method Calls Simpler
      • Dealing with Generalization
    • Product deploying, software installation
      • Create, configure, and publish a web package (.NET Web Profile)
      • Publishing Web Services
      • Manage packages by using NuGet, NPM and Bower
    • Networking
      • Understanding networks: layers and protocols
      • Basic understanding of TCP/IP model and protocols
      • Defining internet, intranet and VPN
      • Basics of Firewalls and DMZ
      • Application layer protocols basics (HTTP, FTP, Telnet)
      • Understanding HTTP and WWW
      • Basic troubleshooting tools (ICMP, ping, traceroute)
      • Client/Server model
      • Sockets, IP and port addressing
      • Using proxy server
      • File transfer services: FTP, TFTP
      • Name resolution services: DNS, whois
      • Remote access services: Telnet, SSH, rdesktop, VNC
      • The basic difference between HTTP and HTTPS protocols
  • Construction Web
    • Web server applications
      • ASP.NET Core
        • Application startup
        • Middleware
        • Working with Static Files
        • Routing
        • Error Handling
        • Globalization and localization
        • Configuration
        • Logging
        • File Providers
        • Dependency Injection
        • Working with Multiple Environments
        • Hosting
        • Managing Application State
        • Request Features
      • ASP.NET Core MVC
        • MVC basics (Model, View, Controller, DI)
        • Model binding and validation
        • View (Razor compilation, Layout, Tag Helpers, Partial Views, DI, View components)
        • Controllers (Route to actions, File uploads)
      • Security and Identity (concepts understanding)
        • Authentication
        • Using identity
        • Authorization with roles
      • Bundle and Minify assets
      • Develop ASP.NET Core MVC apps
      • Advanced topics for ASP.NET Core MVC
        • Application model
        • Filters
        • Areas
        • Application Parts
        • Custom Model Building
        • IActionConstraint
      • Host and deploy ASP.NET Core
      • Migrate from ASP.NET to ASP.NET Core
      • Troubleshoot ASP.NET Core projects
      • Open Web Interface for .NET (OWIN)
      • Web server implementations in ASP.NET Core
    • Web Services
      • REST
      • ASP.NET Web API
        • Routing
        • Configuration
        • Basic error handling
      • Web API-based services
      • Web API Security
      • Token based security
      • SingalR
      • Serialization Frameworks
      • Implement caching
      • gRPC on ASP.NET Core
      • API versioning
      • API documentation
    • Microservices and Cloud
      • Microservices architecture
      • Dockerize a .NET Core application
      • Development workflow for Docker apps
    • JavaScript, HTML, CSS
      • JavaScript: Variables
      • JavaScript: Data types and types conversion
      • JavaScript: Operators
      • JavaScript: Control and Loop constructions
      • JavaScript: Functions, Execution Context and Variables scopes
      • JavaScript: Arrays
      • JavaScript: JS in WebBrowser and basic DOM manipulations
      • HTML: Basic elements
      • CSS: Simple Style rules
      • CSS: selectors
      • Box model
      • HTML: Standards and Browser compatibility
      • HTML: Page Layouts with divs
      • HTML: Frames
      • CSS: Elements positioning and layering
      • CSS: Tables properties
      • CSS: Flexbox
      • Different storage
      • JavaScript: Event Understanding (propagation, capturing, attach/detach)
      • JavaScript: Closure
      • AJAX/JSON
      • Ecma script 6: OOP
      • Promise
      • Strict mode of javascript
    • JavaScript Frameworks
      • Selecting elements
      • Operating on collection
      • Manipulating with elements, working with properties, attributes and data
      • Events
      • animation and effects
      • utilities and Ajax
      • SPA (SINGLE PAGE APPLICATIONS)
      • EcmaScript 6
      • UI frameworks basics:
      • NPM basics:
      • React basics
  • Construction DB
    • SQL
      • Tables, relationships, keys, constraints understanding
      • DDL, DML, DCL understanding
      • SQL data types
      • SQL operators, functions
      • Data manipulation (insert, update, delete)
      • Retrieving data (simple select statement)
      • Joins understanding
      • Creating, modifying, removing database objects
      • Aggregations (ORDER BY, GROUP BY, HAVING, SUM, COUNT, AVG, etc)
      • Combining the results of multiple queries (UNION, EXCEPT, INTERSECT, MINUS, subqueries)
      • Sessions, transactions, locks
      • Isolation levels understanding
      • Implementing stored procedures, user-defined functions, triggers
      • Cursors
    • Data Access Layer
      • Manage connection strings and objects
      • Working with data providers
      • Connect to a data source by using a generic data access interface
      • Handle and diagnose database connection exceptions
      • Manage exceptions when selecting, modifying data
      • Build command objects and query data from data sources
      • Retrieve data source by using the DataReader
      • Manage data by using the DataAdapter and TableAdapter
      • Updating data
      • Entity Framework
        • Query data sources by using EF
        • Code First to existing DB
        • Entity Data Modeling Fundamentals
        • Querying Data
        • Data modification
  • Verification
    • Code Quality
      • MSDN: Guidelines for Names
      • SDO Best Practices Catalog - Coding Standards
      • SDO Best Practices Catalog - Code Review Process
      • SDO Best Practices Catalog - Automatic Code Inspection
      • Automated coding standards enforcement (StyleCop, Resharper)
      • Code Reviews and Toolset
      • Use Work Items (TODO, BUG etc.)
      • Preemptive Error Detection
      • Desirable characteristics of a design (minimal complexity, ease of maintenance, minimal connectednes
      • Creating high quality classes
      • Creating high quality methods
      • Guidelines for initializing variables
      • Exceptions and error handling techniques
      • Best practices of working with data types
      • Code commenting practices
    • Automated Testing (principles, patterns, and practices)
      • Software testing basic concepts
      • Software testing concept
      • Test Case
      • Test Suite
      • Test Plan
      • Testing Levels
      • Naming standards for unit tests
      • Types of test doubles (Stub, Mock, Spy, Fake, Dummy)
      • Basic coverage criteria
      • Testing concepts (Unit vs Functional vs Integration)
      • Goals of Unit Testing, What Makes a Test Valuable?
      • Styles of Unit Testing (Output / State / Collaboration)
      • Good unit test properties
      • F.I.R.S.T Principles of unit testing
      • Test Pyramid concept
      • Testing Pyramid, Agile Testing Pyramid, Diamond
      • Breaking the dependency, Interaction testing
      • Strategies for isolating the database in tests
      • Test smells and how to avoid
      • Test Organization patterns
      • Fixture setup patterns
      • Test double patterns
      • Feature-driven development (FDD)
      • Behavior-driven development (BDD)
      • Test-driven development (TDD)
      • Acceptance testing, Acceptance Test Driven Development (ATDD)
      • Continuous testing
    • Automated Testing (Frameworks, Tools, Libraries)
      • .NET unit test frameworks overview
      • .NET Mocking Frameworks, a comparison
      • xUnit
        • Primary test framework attributes
        • Asserts
        • Exception Handling in Unit Tests
        • Skipping Tests
        • Initialization and Cleanup (Assembly, Class, Test)
        • Data-driven Tests
      • NSubstitute
        • Mocking Method Calls (Using Mock Object, Return Values, Argument Matching)
        • Behavior Verification (Method Was/Not Called, a Specific Number of Times, Getter/Setter Was Called)
        • Throwing exceptions
        • Raising Events from Mock Objects
        • Returning Different Results for Sequential Calls
      • AutoFixture
      • EF Core InMemory test
      • Integration tests in ASP.NET Core
      • Isolating database data in integration tests
      • Test ASP.NET Core MVC apps
  • Configuration Management
    • Product builds and Continuous Integration
      • Automated build concept
      • Dotnet cli
      • CI/CD Basic concepts
    • Managing Versions
      • Fundamental concepts: revisions, working copy, repository, branch, baseline, trunk
      • Versioning Models
      • Distributed Version Control basics
      • Distributed systems advantages and weak sides
      • VCS Management life-cycle on (one of) major tools (clone, commit, update, revert, merge, resolve, et
      • Branching/Merging strategies
      • Blaming (annotate)
      • Revision graph/log actions (Git)
      • Integrating with Issue Tracking Systems
      • Source control Best Practices
Powered by GitBook
On this page
  1. Construction Core
  2. Networking

Sockets, IP and port addressing

A network socket is an internal endpoint for sending or receiving data within a node on a computer network. Concretely, it is a representation of this endpoint in networking software (protocol stack), such as an entry in a table (listing communication protocol, destination, status, etc.), and is a form of system resource.

In practice socket usually refers to a socket in an Internet Protocol (IP) network (where a socket may be called an Internet socket), in particular for the Transmission Control Protocol (TCP), which is a protocol for one-to-one connections. In this context, sockets are assumed to be associated with a specific socket address, namely the IP address and a port number for the local node, and there is a corresponding socket address at the foreign node (other node), which itself has an associated socket, used by the foreign process. Associating a socket with a socket address is called binding.

Note that while a local process can communicate with a foreign process by sending or receiving data to or from a foreign socket address, it does not have access to the foreign socket itself, nor can it use the foreign socket descriptor, as these are both internal to the foreign node. For example, in a connection between 10.20.30.40:4444 and 50.60.70.80:8888 (local IP address:local port, foreign IP address:foreign port), there will also be an associated socket at each end, corresponding to the internal representation of the connection by the protocol stack on that node. These are referred to locally by numerical socket descriptors, say 317 at one side and 922 at the other. A process on node 10.20.30.40 can request to communicate with node 50.60.70.80 on port 8888 (request that the protocol stack create a socket to communicate with that destination), and once it has created a socket and received a socket descriptor (317), it can communicate via this socket by using the descriptor (317). The protocol stack will then forward data to and from node 50.60.70.80 on port 8888. However, a process on node 10.20.30.40 cannot request to communicate based on the foreign socket descriptor, (e.g. "socket 922" or "socket 922 on node 50.60.70.80") as these are internal to the foreign node and are not usable by the protocol stack on node 10.20.30.40.

A protocol stack, today usually provided by the operating system (rather than as a separate library, for instance), is a set of services that allow processes to communicate over a network using the protocols that the stack implements. The application programming interface (API) that programs use to communicate with the protocol stack, using network sockets, is called a socket API. Development of application programs that utilize this API is called socket programming or network programming.

In the standard Internet protocols TCP and UDP, a socket address is the combination of an IP address and a port number, much like one end of a telephone connection is the combination of a phone number and a particular extension. Sockets need not have a source address, for example, for only sending data, but if a program binds a socket to a source address, the socket can be used to receive data sent to that address. Based on this address, Internet sockets deliver incoming data packets to the appropriate application process.

PreviousClient/Server modelNextUsing proxy server

Last updated 5 years ago